Discriminant Analysis Using a Bicriteria Linear Program
نویسندگان
چکیده
منابع مشابه
A Multi Linear Discriminant Analysis Method Using a Subtraction Criteria
Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...
متن کاملClassification Using Linear Discriminant Analysis and Quadratic Discriminant Analysis
2 Classification of One-Dimensional Data 2 2.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.1 Building the LDA Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.2 Results of One-Dimensional LDA Classification . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Quadratic Discriminant Analysis . . . . . ....
متن کاملRobust linear discriminant analysis using S-estimators
The authors consider a robust linear discriminant function based on high breakdown location and covariance matrix estimators. They derive influence functions for the estimators of the parameters of the discriminant function and for the associated classification error. The most B-robust estimator is determined within the class of multivariate S-estimators. This estimator, which minimizes the max...
متن کاملFisher Linear Discriminant Analysis
Fisher Linear Discriminant Analysis (also called Linear Discriminant Analysis(LDA)) are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later c...
متن کاملSeparable linear discriminant analysis
Linear discriminant analysis (LDA) is a popular technique for supervised dimension reduction. Due to the curse of dimensionality usually suffered by LDA when applied to 2D data, several two-dimensional LDA (2DLDA) methods have been proposed in recent years. Among which, the Y2DLDA method, introduced by Ye et al. (2005), is an important development. The idea is to utilize the underlying 2D data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Missouri Journal of Mathematical Sciences
سال: 1992
ISSN: 0899-6180
DOI: 10.35834/1992/0402062